

A

Major Project

on

 SECURITY THREATS TO MOBILE MULTIMEDIA APPLICATIONS

(Submitted in partial fulfillment of the requirements for the award of Degree)

 BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

CH.Phani(187R1A05D2)

Under the Guidance of

 J.SRIVIDYA

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New

Delhi) Recognized Under Section 2(f) & 12(B) of the UGCAct.1956, Kandlakoya (V), Medchal

Road, Hyderabad-501401.

2018-22

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “SECURITY THREATS TO MOBILE

MULTIMEDIA APPLICATIONS” is being submitted by CH.phani(187R1A05D2),in

partial fulfillment of the requirements for the award of the degree of B.Tech in Computer

Science and Engineering to the Jawaharlal Nehru Technological University Hyderabad, is a

record of bonafide work carried out by him/her under our guidance and supervision during

the year 2021-22.

The results embodied in this thesis have not been submitted to any other University or

Institute for the award of any degree or diploma.

 J. Srividya Dr. A. Raji Reddy

(Assistant Professor) DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER

HOD

 Submitted for viva voice Examination held on

ACKNOWLEDGMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our gratitude

to the people who have been instrumental in the successful completion of this project. We take

this opportunity to express my profound gratitude and deep regard to my guide

J.SRIVIDYA, Assistant Professor for her exemplary guidance, monitoring and constant

encouragement throughout the project work. The blessing, help and guidance given by her shall

carry us a long way in the journey of life on which we are about to embark. We also take this

opportunity to express a deep sense of gratitude to Project Review Committee (PRC) Dr. M.

Varaprasad Rao, Mr. J. Narasimha Rao, Dr. T. S. MastanRao, Dr. Suwarna Gothane, Mr.

A. Uday Kiran, Mr. A. Kiran Kumar, Mrs. G. Latha for their cordial support, valuable

information and guidance, which helped us in completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science

and Engineering for providing encouragement and support for completing this project

successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the

course of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy, Chairman

for providing excellent infrastructure and a nice atmosphere throughout the course of this project.

The guidance and support received from all the members of CMR Technical Campus

who contributed to the completion of the project. We are grateful for their constant support and

help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely

acknowledge and thank all those who gave support directly and indirectly in the completion of

this project.

 CH PHANI(187R1A05D2)

 D ANIKETH(187R1A05D9)

B ROHITNIVAS(187R1A05D4)

ABSTRACT

Today's mobile smartphones are very powerful, and many smartphone applications use

wireless multimedia communications. Mobile phone security has become an important aspect of

security issues in wireless multimedia communications. As the most popular mobile operating

system, Android security has been extensively studied by researchers. However, few works have

studied mobile phone multimedia security. In this article, we focus on security issues related to

mobile phone cameras. Specifically, we discover several new attacks that are based on the use of

phone cameras. We implement the attacks on real phones, and demonstrate the feasibility and

effectiveness of the attacks. Furthermore, we propose a lightweight defense scheme that can

effectively detect these attacks.

 LIST OF FIGURES

FIGURE NO NAME OF THE FIGURE PAGE NO.

2.3.2 Module Diagram 14

4.2 Use case Diagram 21

4.3 Class Diagram 22

4.4 Object Diagram 23

4.5 State Diagram 24

4.6 Sequence Diagram 26

4.7 Collaboration Diagram 27

4.8 Activity Diagram 25

4.9 Component Diagram 31

4.10 Data flow Diagram 28

4.11 E-R Diagram 30

4.12 Deployment Diagram 29

4.13 System Architecture 31

LIST OF SCREENSHOTS

SCREENSHOT NAME PAGE NO

Home page 71

Admin login 71

User registration 72

User page 72

 LIST OF CONTENT

CHAPTER NO. TITLE PAGE NO.

1. CHAPTER 1: INTRODUCTION

1.1 General

1

1.2 Objective 3

1.3 Existing System 4

1.3.1 Existing System Disadvantages 4

1.3.2 Literature Survey 5

1.6 Proposed System

1.6.1 Proposed System Advantages

10

10

2. CHAPTER-2 SYSTEM ANALYSIS

2.2 Methodologies

2.3 Technique or Algorithm

2.4 General

2.5 Hardware Requirements

2.6 Software Requirements

11

19

19

19

19

3. CHAPTER 3: ARCHICTECTURE

21

33

3.1 General

3.2 System Architecture

4 CHAPTER -4 DEVELOPMENT TOOLS

4.1 General

4.2 Features of Java

36

36

5.

CHAPTER 5: IMPLEMENTATION

5.1 Implementation

39

6. CHAPTER 6: SNAPSHOTS

6.1 General

6.2 Various Snapshots

71

72

7. CHAPTER 7: SOFTWARE TESTING

7.1 General

7.2 Developing Methodologies

7.3 Types of Testing

73

73

73

8

CHAPTER 8: APPLICATIONS AND FUTURE

ENHANCEMENT

8.1 General

8.2 Future Enhancements

76

77

9. CHAPTER 9: CONCLUSION

9.1 Conclusion

78

10 CHAPTER 10: BIBILIOGRAPHY

10.1: References

79

 1.INTRODUCTION

1

CMRTC

CHAPTER 1

INTRODUCTION

1.1 GENERAL:

 Since 2007, the Android operating system (OS) has enjoyed an incredible rate of

popularity. As of 2013, the Android OS holds 79.3 percent of global smartphone market shares.

Meanwhile, a number of Android security and privacy vulnerabilities have been exposed in the

past several years. Although the Android permission system gives users an opportunity to check

the permission request of an application (app) before installation, few users have knowledge of

what all these permission requests stand for; as a result, they fails to warn users of security risks.

Meanwhile, an increasing number of apps specified to enhance security and protect user privacy

have appeared in Android app markets. Most large anti-virus software companies have published

their Android-version security apps, and tried to provide a shield for smartphones by detecting

and blocking malicious apps. In addition, there are data protection apps that provide users the

capability to encrypt, decrypt, sign, and verify signatures for private texts, emails, and files.

However, mobile malware and privacy leakage remain a big threat to mobile phone security and

privacy.

Generally, when talking about privacy protection, most smartphone users pay attention to

the safety of SMS, emails, contact lists, calling histories, location information, and private files.

They may be surprised that the phone camera could become a traitor; for example, attackers

could stealthily take pictures and record videos by using the phone camera. Nowadays, various

types of camera-based applications have appeared in Android app markets (photography,

barcode readers, social networking, etc.). Spy camera apps have also become quite popular. As

for Google Play, there are nearly 100 spy camera apps, which allow phone users to take pictures

or record videos of other people without their permission. However, believe it or not, phone

users themselves could also become victims.

Attackers can implement spy cameras in malicious apps such that the phone camera is

launched automatically without the device owner’s notice, and the captured photos and videos

are sent out to these remote attackers. Even worse, according to a survey on Android malware

analysis [1], camera permission ranks 12th of the most commonly requested permissions among

2

CMRTC

benign apps, while it is out of the top 20 in malware. The popularity of camera usage in benign

apps and relatively less usage in malware lower users’ alertness to camera-based multimedia

application attacks.

3

CMRTC

1.2 OBJECTIVE:

Nowadays, people carry their phones everywhere; hence, their phones see lots of private

information. If the phone camera is exploited by a malicious spy camera app, it may cause

serious security and privacy problems. For example, the phone camera may record a user’s daily

activities and conversations, and then send these out via the Internet or multimedia messaging

service (MMS). Secret photography is not only immoral but also illegal in some countries due to

the invasion of privacy. Nevertheless, a phone camera could also provide some benefits if it is

con-trolled well by the device owner. For example, when the owner wants to check if someone

has used his/her phone without permission, the phone camera could be used to record the face of

an unauthorized user. Besides, it can also help the owner find a lost phone.

In this article, we first conduct a survey on the threats and benefits of spy cameras. Then

we present the basic attack model and two camera based attacks: the remote-controlled real-time

monitoring attack and the passcode inference attack. We run these attacks along with popular

antivirus software to test their stealthiness, and conduct experiments to evaluate both types of

attacks. The results demonstrate the feasibility and effectiveness of these attacks. Finally, we

propose a lightweight defense scheme.

4

CMRTC

1.3 EXISTING SYSTEM:

Several video-based attacks targeted at keystrokes have been proposed. The attacks can

obtain user input on touch screen smart phones. Maggi et al. implement an automatic shoulder

surfing attack against modern touch-enabled smart phones. The attacker deploys a video camera

that can record the target screen while the victim is entering text. Then user input can be

reconstructed solely based on the keystroke feedback displayed on the screen.

1.3.1 DRAWBACKS IN EXISTING SYSTEM:

 It works only when visual feedback such as magnified keys are available.

 Mobile malware and privacy leakage remain a big threat to mobile phone security and

privacy

5

CMRTC

1.3.2 LITERATURE SURVEY:

TITLE : Dissecting Android Malware: Characterization and Evolution

AUTHOR : Y. Zhou and X. Jiang,

YEAR : 2012

DESCRIPTION

 The popularity and adoption of smart phones has greatly stimulated the spread of mobile

malware, especially on the popular platforms such as Android. In light of their rapid growth,

there is a pressing need to develop effective solutions. However, our defense capability is largely

constrained by the limited understanding of these emerging mobile malware and the lack of

timely access to related samples. In this paper, we focus on the Android platform and aim to

systematize or characterize existing Android malware. Particularly, with more than one year

effort, we have managed to collect more than 1,200 malware samples that cover the majority of

existing Android malware families, ranging from their debut in August 2010 to recent ones in

October 2011. In addition, we systematically characterize them from various aspects, including

their installation methods, activation mechanisms as well as the nature of carried malicious

payloads. The characterization and a subsequent evolution-based study of representative families

reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus

software. Based on the evaluation with four representative mobile security software, our

experiments show that the best case detects 79.6% of them while the worst case detects only

20.2% in our dataset. These results clearly call for the need to better develop next-generation

anti-mobile-malware solutions.

6

CMRTC

TITLE : A Fast Eavesdropping Attack against Touchscreens.

AUTHOR : F. Maggi, et

YEAR : 2011.

DESCRIPTION

 The pervasiveness of mobile devices increases the risk of exposing sensitive information

on the go. In this paper, we arise this concern by presenting an automatic attack against modern

touchscreen keyboards. We demonstrate the attack against the Apple iPhone - 2010's most

popular touchscreen device - although it can be adapted to other devices (e.g., Android) that

employ similar key-magnifying keyboards. Our attack processes the stream of frames from a

video camera (e.g., surveillance or portable camera) and recognizes keystrokes online, in a

fraction of the time needed to perform the same task by direct observation or offline analysis of a

recorded video, which can be unfeasible for large amount of data. Our attack detects, tracks, and

rectifies the target touchscreen, thus following the device or camera's movements and

eliminating possible perspective distortions and rotations In real-world settings, our attack can

automatically recognize up to 97.07 percent of the keystrokes (91.03 on average), with 1.15

percent of errors (3.16 on average) at a speed ranging from 37 to 51 keystrokes per minute.

7

CMRTC

TITLE : ispy: Automatic Reconstruction of Typed Input from Compromising Reflections

AUTHOR : R. Raguram et al.,

YEAR : 2011.

DESCRIPTION

 We investigate the implications of the ubiquity of personal mobile devices and reveal

new techniques for compromising the privacy of users typing on virtual keyboards. Specifi-

cally, we show that so-called compromising reflections (in, for example, a victim's sunglasses) of

a device's screen are sufficient to enable automated reconstruction, from video, of text typed on a

virtual keyboard. Despite our deliberate use of low cost commodity video cameras, we are able

to compensate for variables such as arbitrary camera and device positioning and motion through

the application of advanced computer vision and machine learning techniques. Using footage

captured in realistic environments (e.g., on a bus), we show that we are able to reconstruct fluent

translations of recorded data in almost all of the test cases, correcting users' typing mistakes at

the same time. We believe these results highlight the importance of adjusting privacy

expectations in response to emerging technologies.

8

CMRTC

TITLE : Defending Web Services Against Denial of Service Attacks Using Client Puzzles

AUTHOR : Suriadi Suriadi, Douglas Stebila, Andrew Clark, and Hua Liu_

YEAR : 2010.

DESCRIPTION

 The interoperable and loosely-coupled web services architecture, while beneficial, can be

resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker

can use a relatively insignificant amount of resources to exhaust the computational resources of a

web service. We investigate the effectiveness of defending web services from DoS attacks using

client puzzles, a cryptographic countermeasure which provides a form of gradual authentication

by requiring the client to solve some computationally difficult problems before access is granted.

In particular, we describe a mechanism for integrating a hash-based puzzle into existing web

services frameworks and analyze the effectiveness of the countermeasure using a variety of

scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks.

They can also mitigate certain types of semantic-based attacks, although they may not be the

optimal solution.

9

CMRTC

TITLE : A Client-Transparent Approach to Defend Against Denial of Service Attacks

AUTHOR : Mudhakar Srivatsay, Arun Iyengarz, Jian Yinz and Ling Liuy

YEAR : 2012

DESCRIPTION

 Denial of Service (DoS) attacks attempt to consume a server's resources (network

bandwidth, computing power, main memory, disk bandwidth etc) to near exhaustion so that there

are no resources left to handle requests from legitimate clients.

In this paper, we propose a light-weight client transparent technique to defend against DoS

attacks with two unique features: (i) Our technique can be implemented entirely using JavaScript

support provided by a standard client-side browser like Mozilla FireFox or Microsoft Internet

Explorer. Client transparency follows from the fact that: (i) no changes to client-side software

are required, (ii) no client-side superuser privileges are required, and (iii) clients (human beings

or automated clients) can browse a DoS protected website in the same manner that they browse

other websites. (ii) Although we operate using the client-side browser (HTTP layer), our

technique enables fast IP level packet _ltering at the server's _rewall and requires no changes to

the application(s) hosted by the web server.

10

CMRTC

1.1 PROPOSED SYSTEM:

In this article, we first conduct a survey on the threats and benefits of spy cameras. Then we

present the basic attack model and two camera based attacks: the remote-controlled real-time

monitoring attack and the passcode inference attack. We run these attacks along with popular

antivirus software to test their stealthiness, and conduct experiments to evaluate both types of

attacks. The results demonstrate the feasibility and effectiveness of these attacks.

1.4.1 ADVANTAGES IN PROPOSED SYSTEM:

 The attacker needs considerable effort in translating central processing unit puzzle software

to its functionally equivalent GPU version such that the translation cannot be done in real

time.

 Moreover, we show how to implement puzzle in the generic server-browser model. To

outsourcing any business onto a cloud.

 By using this Applications, we can easily be avoided by selecting the time to launch attack.

 The malicious camera app can periodically check the screen status and run the stealthy video

recording only when the screen is off, which means that the user is not using the phone and

the camera device is idle.

11

CMRTC

2.SYSTEM ANALYSIS

11

CMRTC

CHAPTER 2

SYSTEM ANALYSIS

2.1 GENERAL

 The seriousness of the DoS/DDoS problem and their increased frequency has led to the

advent of numerous defense mechanisms. In this paper, we are particularly interested in the

countermeasures to DoS/DDoS attacks on server computation power. DoS and DDoS are

effective if attackers spend much less resources than the victim server or are much more

powerful than normal users.

 There are five modules for the Software Puzzle.

2.2 METHODOLOGIES

Following modules involves

2.2.1 MODULES

 USER INTERFACE DESIGN

 GPU-INFLATED DOS ATTACK

 PUZZLE GENERATION

 CODE PROTECTION

 SECURITY ANALYSIS

 User Interface Design:

 This is the first module of our project. The important role for the cloud user is to move login

window to cloud user window. This module has created for the security purpose. In this login

page we have to enter login user id and password. It will check username and password is match

or not (valid user id and valid password). If we enter any invalid username or password we can’t

12

CMRTC

enter into login window to user window it will shows error message. So we are preventing from

unauthorized user entering into the login window to user window. It will provide a good security

for our project. So server contain user id and password server also check the authentication of the

user. It well improves the security and preventing from unauthorized user enters into the

network. In our project we are using JSP for creating design. Here we validate the login user and

server authentication.

 GPU-Inflated Dos Attack:

 In order to elaborate software puzzle, we recap its rival GPU-inflated DoS attack in advance.

When a client wants to obtain a service, she sends a request to the server. After receiving the

client request, the server responds with a puzzle challenge x. If the client is genuine, she will find

the puzzle solution y directly on the host CPU, and send the response (x, y) to the server.

However, as shown in Fig. 1, by using the similar mechanism in accelerating calculation with

GPU, a malicious user who controls the host will send the challenge x to GPU and exploit the

GPU resource to accelerate the puzzle-solving process.

Since the virtual keyboard in a touch screen smartphone is much smaller than computer

keyboards, the virtual keys are very close to each other. Based on measurement of a Galaxy

Nexus 4 phone, even an offset of 5 mm could result in touching the wrong key. Hence, when

typing, users tend to keep a short distance to the screen, which allows the phone (front) camera

to have a clear view of a user’s eye movements. A user’s eyes move along with the keys being

touched, which means that tracking the eye movement could possibly tell what the user is

entering. Thus, it is of great importance to investigate whether an attacker could obtain a phone

user’s passcode by tracking the eye movements.

 Puzzle Generation:

In order to construct a puzzle, the server has to execute three modules: puzzle core generation,

puzzle challenge generation, puzzle encrypting/obfuscating.

1) Puzzle Core Generation: From the code block warehouse, the server first chooses n code

blocks based on hash functions and a secret, e.g., the j th instruction block bi j , where i j = H1(y,

13

CMRTC

j), and y = H2(key, sn), with one-way functions H1(·) and H2(·), key is the server’s secret, and

sn is a nonce or timestamp. All the chosen blocks are assembled into a puzzle core, denoted as

C(·) = (bi1 ; bi2 ; · · · ; bin). As an illustrative example, Table III in the appendix shows an

example puzzle core C generated from AES operation blocks stored in warehouse S.

2) Puzzle Challenge Generation: Given some auxiliary input messages such as IP addresses,

and in-line constants, the server calculates a message m from public data such as their IP

addresses, port numbers and cookies, and produces a challenge x = C(y,m), smiliar to encrypting

plaintext m with key y to produce ciphertext x. As the attacker does not know the puzzle core

C(·) (or equivalently the puzzle function P(·)) in advance, it can not exploit GPU to solve the

puzzle C0x in real time using the basic GPU-inflated DoS attack addressed in Subsection III-A.

Nonetheless, if the puzzle is merely constructed as aboveit is possible for an attacker to generate

the GPU kernel by mapping the CPU instructions in C0x to the GPU instructions one by one, i.e.,

to automatically translate the CPU software puzzle C0x into its functionally equivalent GPU

version.

 Code Protection:

Intuitively, code obfuscation is able to thwart the above translation threat to some extent.

Though there are no generic obfuscation techniques which can prevent a patient and

advanced hacker from understanding a program results in show that obfuscation does

increase the cost of reverse-engineering. Thus, although code obfuscation may be not

satisfactory in long-term software defense against hacking, it is suitable for fortifying

software puzzles which demand a protection period of several seconds only.

A puzzle consists of instructs, and each instruction has a form (opCode, [operands]),

where opCode indicates which operation (e.g., addition, shift, jump) is, whilethe operands,

varying with opCode, are the parameters (e.g., target address of jump instruction) to

complete the operations. As a popular obfuscation technology, code encryption technology

treats software code as data string and encrypts both operand and opCode.

 Security Analysis:

 In this module puzzle aims to prevent GPU from being used in the puzzle-solving

process based on different instruction sets and real-time environments between GPU and CPU.

14

CMRTC

Conversely, an adversary may attempt to deface the puzzle scheme by simulating the host on

GPU (Subsection V-A), cracking puzzle algorithm (Subsection V-B), re-producing GPU-version

puzzle (Subsections V-C ∼ V-E), or abusing the access priority in puzzle-solving (Subsection V-

F).

2.2.2 MODULE DIAGRAMS:

 User Interface Design

valid

Request Validate

 Invalid

Database

Home Page

Registration

Page

Register

Server

15

CMRTC

 Gpu-Inflated Dos Attack

puzzle

User Login

Send Identity to

database

16

CMRTC

 Puzzle Generation.

puzzle

User Login

Check IP from

Database

17

CMRTC

 Code Protection.

puzzle

User Login

Check Identity

Send data

18

CMRTC

 Security Analysis

puzzle

User Login

Check Identity

Send data No DDOS Attack

19

CMRTC

2.3 SYSTEM TECHNIQUES:

Algorithm: Cracking Data Puzzle Algorithm

The practical strategy of the attacker is to accelerate the brute force process by exploiting

the parallel computation capability of GPU cores. We classify client puzzles into two types. If a

puzzle functions P, as all the existing client puzzle schemes, is fixed and disclosed in advance,

the puzzle is called a data puzzle; otherwise, it is referred to as a software puzzle.

2.4 GENERAL

These are the requirements for doing the project. Without using these tools and

software’s we can’t do the project. So we have two requirements to do the project. They are

1. Hardware Requirements.

2. Software Requirements.

2.5 HARDWARE REQUIREMENTS

The hardware requirements may serve as the basis for a contract for the implementation

of the system and should therefore be a complete and consistent specification of the whole

system. They are used by software engineers as the starting point for the system design. It shows

what the system does and not how it should be implemented.

PROCESSOR : PENTIUM IV 2.6 GHz, Intel Core 2 Duo.

RAM : 512 MB DD RAM

MONITOR : 15” COLOR

HARD DISK : 40 GB

2.6 SOFTWARE REQUIREMENTS

 The software requirements document is the specification of the system. It should include

both a definition and a specification of requirements. It is a set of what the system should do

rather than how it should do it. The software requirements provide a basis for creating the

software requirements specification. It is useful in estimating cost, planning team activities,

20

CMRTC

performing tasks and tracking the team’s and tracking the team’s progress throughout the

development activity.

Front End : JAVA SWING.

Back End : MY SQL 5.5

Operating System : Windows 07

IDE : Eclipse

21

CMRTC

 3.ARCHICTECTURE

21

CMRTC

CHAPTER 3

ARCHITECTURE

3.1 GENERAL

 Design Engineering deals with the various UML [Unified Modeling language] diagrams for

the implementation of project. Design is a meaningful engineering representation of a thing that

is to be built. Software design is a process through which the requirements are translated into

representation of the software. Design is the place where quality is rendered in software

engineering. Design is the means to accurately translate customer requirements into finished

product.

3.1.2 Use Case Diagram:

user

Register

Puzzle Generation

Login
Databse

EXPLANATION:

The main purpose of a use case diagram is to show what system functions are performed

for which actor. Roles of the actors in the system can be depicted. In our use case diagram first

adopts software protection technologies to ensure challenge data confidentiality and code

security for an appropriate time period. After receiving the puzzle sent from the server, a client

22

CMRTC

tries to solve the puzzle on the host CPU, and replies to the server, as the conventional client

puzzle scheme does.

3.1.3 Class Diagram:

EXPLANATION:

 The class diagram is the main building block of object oriented modeling. It is used both

for general conceptual modeling of the systematic of the application, and for detailed modeling

translating the models into programming code.

In class diagram took the user, provider and consumer. It adopts software protection

technologies to ensure challenge data confidentiality and code security for an appropriate time

period. After receiving the puzzle sent from the server, a client tries to solve the software puzzle

on the host CPU, and replies to the server, as the conventional client puzzle scheme does.

http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code

23

CMRTC

3.1.4 Object Diagram:

EXPLANATION:

 Object diagram we are telling about the flow of objects how the process is running. In

the above digram tells about the flow of objects between the classes.The main object of this

diagram is to adopts software protection technologies to ensure challenge data confidentiality

and code security for an appropriate time period. After receiving the puzzle sent from the server,

a client tries to solve the puzzle on the host CPU, and replies to the server, as the conventional

client puzzle scheme does.

No DDOS Attack

User
Puzzle Database

Register

Login

File Upload

24

CMRTC

3.1.5 State Diagram:

EXPLANATION:

State diagrams require that the system described is composed of a finite number of states;

sometimes, this is indeed the case, while at other times this is a reasonable abstraction. Many

forms of state diagrams exist, which differ slightly and have different semantics. In our state

diagram first to adopts software protection technologies to ensure challenge data confidentiality

and code security for an appropriate time period. After receiving the puzzle sent from the server,

a client tries to solve the puzzle on the host CPU, and replies to the server, as the conventional

client puzzle scheme does.

Register

Software Puzzle

Login

Fileupload

No ddos

attacks

25

CMRTC

3.1.6 Activity Diagram:

Register

Software Puzzle

Login

Database No ddos

attacks

EXPLANATION:

In the Unified Modeling Language, activity diagrams can be used to describe the business

and operational step-by-step workflows of components in a system. An activity diagram shows

the overall flow of control. In our activity diagram first to adopts software protection

technologies to ensure challenge data confidentiality and code security for an appropriate time

26

CMRTC

period. After receiving the puzzle sent from the server, a client tries to solve the puzzle on the

host CPU, and replies to the server, as the conventional client puzzle scheme does.

3.1.7 Sequence Diagram:

User Software

Puzzle

Database

Register

Send the constraint

puzzle

Login

No ddos attack

EXPLANATION:

 In our sequence diagram specifying processes operate with one another and in order. In

our sequence diagram first to adopts software protection technologies to ensure challenge data

confidentiality and code security for an appropriate time period. After receiving the puzzle sent

from the server, a client tries to solve the puzzle on the host CPU, and replies to the server, as the

conventional client puzzle scheme does.

27

CMRTC

3.1.8 Collaboration Diagram:

User

Software

Puzzle

Database

1: Register

2: Send the constraint

3: puzzle

4: Login

5: No ddos attack

EXPLANATION:

A collaboration diagram describes interactions among objects in terms of sequenced

messages. Collaboration diagrams represent a combination of information taken from class,

sequence, and use case diagrams describing both the static structure and dynamic behavior of a

system. In this diagram first to adopts software protection technologies to ensure challenge data

confidentiality and code security for an appropriate time period. After receiving the puzzle sent

from the server, a client tries to solve the puzzle on the host CPU, and replies to the server, as the

conventional client puzzle scheme does.

28

CMRTC

3.1.9 Data Flow Diagram:

Level-0:

Database

User Register

Cloud User Window

29

CMRTC

Level-1:

EXPLANATION:

 It does not show information about the timing of processes, or information about

whether processes will operate in sequence or in parallel. In the DFDs the level zero process is

based on the login validations. To adopt software protection technologies to ensure challenge

data confidentiality and code security for an appropriate time period. After receiving the puzzle

Puzzle

Login

Verify identity

and ip

Send data
No ddos

attack

30

CMRTC

sent from the server, a client tries to solve the puzzle on the host CPU, and replies to the server,

as the conventional client puzzle scheme does.

3.1.10 E-R Diagram:

EXPLANATION:

Entity-Relationship Model (ERM) is an abstract and conceptual representation of data.

Entity-relationship modeling is a database modeling method, used to produce a type of

conceptual schema or semantic data model of a system, often a relational database. In our ER

diagram to adopt software protection technologies to ensure challenge data confidentiality and

code security for an appropriate time period. After receiving the puzzle sent from the server, a

Register

Puzzle

 Login

Verify user identity

No DDOS Attacks

31

CMRTC

client tries to solve the puzzle on the host CPU, and replies to the server, as the conventional

client puzzle scheme does.

3.1.11 Component Diagram:

EXPLANATION:

 In the Unified Modeling Language, a component diagram depicts how components are wired

together to form larger components and they are used to illustrate the structure of arbitrarily

complex systems. For this in our component diagram to adopt software protection technologies

to ensure challenge data confidentiality and code security for an appropriate time period. After

receiving the puzzle sent from the server, a client tries to solve the puzzle on the host CPU, and

replies to the server, as the conventional client puzzle scheme does.

Register

puzzle

No Ddos

Attacks

Verify identity

 Login

32

CMRTC

3.2 System Architecture:

EXPLANATION:

The systems architect establishes the basic structure of the system, this we know about

that the practical strategy of the attacker is to accelerate the brute force process by exploiting the

parallel computation capability of GPU cores. We classify client puzzles into two types. If a

puzzle functions P, as all the existing client puzzle schemes, is fixed and disclosed in advance,

the puzzle is called a data puzzle; otherwise, it is referred to as a puzzle. To ensure challenge

User Register

Verify credentials

Puzzle

Secret Key Generation

Verify

Identity

No DDOS Attacks

Login

33

CMRTC

data confidentiality and code security for an appropriate time period. After receiving the puzzle

sent from the server, a client tries to solve the software puzzle on the host CPU, and replies to the

server, as the conventional client puzzle scheme does.

4.13 CONCLUSION:

In this paper, puzzle scheme is proposed for defeating GPU-inflated DoS attack. It adopts

software protection technologies to ensure challenge data confidentiality and code security for an

appropriate time period, e.g., 1-2 seconds. Hence, it has different security requirement from the

conventional cipher which demands long-term confidentiality only, and code protection which

focuses on long-term robustness against reverse-engineering only. Since the puzzle may be built

upon a data puzzle, it can be integrated with any existing server-side data puzzle scheme, and

easily deployed as the present client puzzle schemes do.

34

CMRTC

4.DEVELOPMENT TOOLS

36

CMRTC

CHAPTER 4

DEVELOPMENT TOOLS

4.1 GENERAL

This chapter is about the software language and the tools used in the development of the

project. The platform used here is JAVA.

4.2 FEATURES OF JAVA

4.2.1 THE JAVA FRAMEWORK

Java is a programming language originally developed by James Gosling at Sun

Microsystemsand released in 1995 as a core component of Sun Microsystems' Java platform.

The language derives much of its syntax from C and C++ but has a simpler object model and

fewer low-level facilities. Java applications are typically compiled to bytecode that can run on

any Java Virtual Machine (JVM) regardless of computer architecture. Java is general-purpose,

concurrent, class-based, and object-oriented, and is specifically designed to have as few

implementation dependencies as possible. It is intended to let application developers "write once,

run anywhere".

Java is considered by many as one of the most influential programming languages of the

20th century, and is widely used from application software to web applicationsThe java

framework is a new platform independent that simplifies application development internet.Java

technology's versatility, efficiency, platform portability, and security make it the ideal

technology for network computing. From laptops to datacenters, game consoles to scientific

supercomputers, cell phones to the Internet, Java is everywhere!

4.2.2 OBJECTIVES OF JAVA

To see places of Java in Action in our daily life, explore java.com.

Why Software Developers Choose Java

Java has been tested, refined, extended, and proven by a dedicated community. And numbering

more than 6.5 million developers, it's the largest and most active on the planet. With its

versatility, efficiency, and portability, Java has become invaluable to developers by enabling

them to:

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Java_(software_platform)
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Low-level_programming_language
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Java_bytecode
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Computer_architecture

37

CMRTC

• Write software on one platform and run it on virtually any other platform

• Create programs to run within a Web browser and Web services

• Develop server-side applications for online forums, stores, polls, HTML forms

processing, and more

• Combine applications or services using the Java language to create highly customized

applications or services

• Write powerful and efficient applications for mobile phones, remote processors, low-cost

consumer products, and practically any other device with a digital heartbeat

Some Ways Software Developers Learn Java

• Today, many colleges and universities offer courses in programming for the Java

platform. In addition, developers can also enhance their Java programming skills by

reading Sun's java.sun.com Web site, subscribing to Java technology-focused newsletters,

using the Java Tutorial and the New to Java Programming Center, and signing up for

Web, virtual, or instructor-led courses.

Object Oriented

To be an Object Oriented language, any language must follow at least the four characteristics.

1.Inheritance :It is the process of creating the new classes and using the behavior of the

existing classes by extending them just to reuse the existing code and adding addition a

features as needed.

2.Encapsulation: It is the mechanism of combining the information and providing the

abstraction.

3.Polymorphism: As the name suggest one name multiple form, Polymorphism is the way

of providing the different functionality by thefunctions having the same name based on

the signatures of the methods.

4.Dynamic binding : Sometimes we don't have the knowledge of objects about their

specific types while writing our code. It is the way of providing the maximum

functionality to a program about the specific type at runtime.

38

CMRTC

4.2.3 COLLECTIONS:

 The Java Collections API's provide Java developers with a set of classes and

interfaces that makes it easier to handle collections of objects. In a sense Collection's works a bit

like arrays, except their size can change dynamically, and they have more advanced behavior

than arrays. In this project we are using Array List for collecting the user input and saving

values.

4.2.4 THREAD:

In this project threading concept is very important. A thread is a sequential path of code

execution within a program. And each thread has its own local variables, program counter and

lifetime. Like creation of a single thread, we can also create more than one thread (multithreads)

in a program using class Thread or implementing interface Runnable to make our project

efficient and dynamic. In our project we are using request process with the help of multi

threading concepts.

4.2.5 SWINGS:

 Swing, which is an extension library to the AWT, includes new and improved

components that enhance the look and functionality of GUIs. Swing can be used to build

Standalone swing gui apps as well as Servlets and Applets. It employs a model/view design

architecture. Swing is more portable and more flexible than AWT.

39

CMRTC

 5.IMPLEMENTATION

 39

CMRTC

CHAPTER 5

IMPLEMENTATION

5.1 GENERAL

SERVER.JAVA:

package com.server;

import java.awt.BorderLayout;

import java.awt.EventQueue;

import java.io.InputStream;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.OutputStream;

import java.net.InetAddress;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.ArrayList;

public class Server extends JFrame implements Runnable {

 private JPanel contentPane;

 OutputStream sou;

 public ObjectOutputStream sobou;

 public TreeMap t;

 40

CMRTC

 TreeMap ipport=new TreeMap();

 TreeMap reg_po=new TreeMap();

 public static ArrayList se=new ArrayList();

 public ArrayList studentname=new ArrayList();

 ArrayList al=new ArrayList<>();

 public ArrayList regno=new ArrayList();

 public ArrayList department=new ArrayList();

 public ArrayList file=new ArrayList();

 public static ArrayList table=new ArrayList();

 public static void main(String[] args) {

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 Server frame = new Server();

 frame.setVisible(true);

 Thread t=new Thread(frame);

 t.start();

 } catch (Exception e) {

 e.printStackTrace();

 }

 41

CMRTC

 }

 });

 }

 @Override

 public void run() {

 // TODO Auto-generated method stub

 try{

 InetAddress ip=InetAddress.getLocalHost();

 String ipadd=ip.getHostAddress();

 ServerSocket serverSocket=null;

 serverSocket=new ServerSocket(101);

 while(true)

 {

 //System.out.println("Server Waiting");

System.out.println(" Main Server waiting for The Ip Address : "+ipadd+" And the Protocol No

is.......:101");

 Socket socket=serverSocket.accept();

 System.out.println("accepting request");

 ObjectInputStream objectInputStream=new ObjectInputStream(socket.getInputStream());

 ArrayList arrayList=(ArrayList)objectInputStream.readObject();

 String request=arrayList.get(0).toString();

 42

CMRTC

 System.out.println("register is\t"+request);

 if(request.equals("register"))

 {

 //Registration rg=(Registration)arrayList.get(1);

 String user=arrayList.get(1).toString().trim();

 String pass=arrayList.get(2).toString().trim();

 String cpass=arrayList.get(3).toString().trim();

 String email=arrayList.get(4).toString().trim();

 String sex=arrayList.get(5).toString().trim();

 String dob=arrayList.get(6).toString().trim();

 String con=arrayList.get(7).toString().trim();

 String add=arrayList.get(8).toString().trim();

 String ip1=arrayList.get(9).toString().trim();

 ArrayList al=new ArrayList<>();

 al.add(user);

 al.add(pass);

 al.add(cpass);

 al.add(email);

 al.add(sex);

 al.add(dob);

 43

CMRTC

 al.add(con);

 al.add(add);

 al.add(ip1);

 MethodImplementation implementation=MethodImplementation.getImplementation();

 int status=implementation.insert(al);

 ObjectOutputStream objectOutputStream=new

ObjectOutputStream(socket.getOutputStream());

 objectOutputStream.writeObject(status);

 arrayList.clear();

 }

 if(request.equals("login"))

 {

 Registration rg=(Registration)arrayList.get(1);

 System.out.println("LOgin"+rg);

 MethodImplementation implementation=MethodImplementation.getImplementation();

 boolean status=implementation.verifyCredentials(rg);

ObjectOutputStream objectOutputStream=new ObjectOutputStream(socket.getOutputStream());

 objectOutputStream.writeObject(status);

 arrayList.clear();

 }

 }

 44

CMRTC

Picpuzzle.java

package com.design;

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

class picpuzzle2 extends JFrame implements ActionListener{

JButton b1,b2,b3,b4,b5,b6,b7,b8,b9,sample,starB;

Icon s1;

Icon star;

Icon ic0=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\starB0.jpg");

Icon ic10=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\starB10.jpg");

Icon ic20=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\starB20.jpg");

Icon samicon1=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\main.jpg");

Icon samicon2=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\main2.jpg");

Icon samicon3=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\main3.jpg");

 45

CMRTC

Icon ic1=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\1.jpg");

Icon ic2=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\5.jpg");

Icon ic3=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\2.jpg");

Icon ic4=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\7.jpg");

Icon ic5=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\4.jpg");

Icon ic6=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\6.jpg");

Icon ic7=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\8.jpg");

Icon ic8=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\9.jpg");

Icon ic9=new ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\3.jpg");

Icon ic11=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\12.jpg");

Icon ic12=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\13.jpg");

Icon ic13=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\16.jpg");

Icon ic14=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\11.jpg");

Icon ic15=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\14.jpg");

 46

CMRTC

Icon ic16=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\19.jpg");

Icon ic17=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\17.jpg");

Icon ic18=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\15.jpg");

Icon ic19=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\18.jpg");

 Icon ic21=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\24.jpg");

Icon ic22=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\25.jpg");

Icon ic23=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\21.jpg");

Icon ic24=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\27.jpg");

Icon ic25=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\23.jpg");

Icon ic26=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\29.jpg");

Icon ic27=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\28.jpg");

 47

CMRTC

Icon ic28=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\22.jpg");

Icon ic29=new

ImageIcon("E:\\prabaworkspace\\puzzleencrytion\\src\\pic\\26.jpg");

 picpuzzle2(){

 super("pic puzzle");

star=b9.getIcon();

getContentPane().add(b1);getContentPane().add(b2);getContentPane().add(b3);get

ContentPane().add(b4);getContentPane().add(b5);getContentPane().add(b6);getCo

ntentPane().add(b7);getContentPane().add(b8);

getContentPane().add(b9);getContentPane().add(sample);getContentPane().add(l1)

;getContentPane().add(l2);getContentPane().add(starB);getContentPane().add(l3);

b1.addActionListener(this); b2.addActionListener(this);

 b3.addActionListener(this); b4.addActionListener(this);

b5.addActionListener(this); b6.addActionListener(this);

 b7.addActionListener(this); b8.addActionListener(this);

 b9.addActionListener(this);

 sample.addActionListener(this);

getContentPane().setLayout(null);

setSize(600,500);

setVisible(true);

 48

CMRTC

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

 public void actionPerformed(ActionEvent e){

if(e.getSource()==b1){

 Icon s1=b1.getIcon();

 if(b2.getIcon()==star){

 b2.setIcon(s1);

 b1.setIcon(star);

 } else if(b4.getIcon()==star){

 b4.setIcon(s1);

 b1.setIcon(star);

 }

 }//end of if

 if(e.getSource()==b2){

 Icon s1=b2.getIcon();

 if(b1.getIcon()==star){

 b1.setIcon(s1);

 b2.setIcon(star);

 } else if(b5.getIcon()==star){

 49

CMRTC

 b5.setIcon(s1);

 b2.setIcon(star);

 }

 else if(b3.getIcon()==star){

 b3.setIcon(s1);

 b2.setIcon(star);

 }

 }//end of if

 if(e.getSource()==b3){

 Icon s1=b3.getIcon();

 if(b2.getIcon()==star){

 b2.setIcon(s1);

 b3.setIcon(star);

 } else if(b6.getIcon()==star){

 b6.setIcon(s1);

 b3.setIcon(star);

 }

 }//end of if

 if(e.getSource()==b4){

 50

CMRTC

 Icon s1=b4.getIcon();

 if(b1.getIcon()==star){

 b1.setIcon(s1);

 b4.setIcon(star);

 } else if(b5.getIcon()==star){

 b5.setIcon(s1);

 b4.setIcon(star);

 }

 else if(b7.getIcon()==star){

 b7.setIcon(s1);

 b4.setIcon(star);

 }

 }//end of if

 if(e.getSource()==b5){

 Icon s1=b5.getIcon();

 if(b2.getIcon()==star){

 b2.setIcon(s1);

 b5.setIcon(star);

 } else if(b4.getIcon()==star){

 51

CMRTC

 b4.setIcon(s1);

 b5.setIcon(star);

 }

 else if(b6.getIcon()==star){

 b6.setIcon(s1);

 b5.setIcon(star);

 }

 else if(b8.getIcon()==star){

 b8.setIcon(s1);

 b5.setIcon(star);

 }

 }//end of if

 if(e.getSource()==b6){

 Icon s1=b6.getIcon();

 if(b3.getIcon()==star){

 b3.setIcon(s1);

 b6.setIcon(star);

 } else if(b5.getIcon()==star){

 b5.setIcon(s1);

 52

CMRTC

 b6.setIcon(star);

 }

 else if(b9.getIcon()==star){

 b9.setIcon(s1);

 b6.setIcon(star);

 }

}//end of if

 if(e.getSource()==b7){

 Icon s1=b7.getIcon();

 if(b4.getIcon()==star){

 b4.setIcon(s1);

 b7.setIcon(star);

 } else if(b8.getIcon()==star){

 b8.setIcon(s1);

 b7.setIcon(star);

 }

 }

 if(e.getSource()==b8){

 53

CMRTC

 Icon s1=b8.getIcon();

 if(b7.getIcon()==star){

 b7.setIcon(s1);

 b8.setIcon(star);

 } else if(b5.getIcon()==star){

 b5.setIcon(s1);

 b8.setIcon(star);

 }

 else if(b9.getIcon()==star){

 b9.setIcon(s1);

 b8.setIcon(star);

 }

 }

 if(e.getSource()==b9){

 Icon s1=b9.getIcon();

 if(b8.getIcon()==star){

 b8.setIcon(s1);

 b9.setIcon(star);

 } else if(b6.getIcon()==star){

 54

CMRTC

 b6.setIcon(s1);

 b9.setIcon(star);

 }

 }

if(e.getSource()==sample){

 s1=sample.getIcon();

 if(s1==samicon3){

sample.setIcon(samicon1);

b1.setIcon(ic1);

b2.setIcon(ic2);

b3.setIcon(ic3);

b4.setIcon(ic4);

b5.setIcon(ic5);

b6.setIcon(ic6);

b7.setIcon(ic7);

b8.setIcon(ic8);

b9.setIcon(ic9);

star=b9.getIcon();

System.out.println("completed");

 55

CMRTC

System.out.println(star+"hello");

starB.setIcon(ic0);

System.out.println("completed");}//eof if

else if(s1==samicon1){

sample.setIcon(samicon2);

b1.setIcon(ic11);

b2.setIcon(ic12);

b3.setIcon(ic13);

b4.setIcon(ic14);

b5.setIcon(ic15);

b6.setIcon(ic16);

b7.setIcon(ic17);

b8.setIcon(ic18);

b9.setIcon(ic19);

star=b6.getIcon();

System.out.println("completed");

System.out.println(star+"hello");

starB.setIcon(ic10);

 56

CMRTC

System.out.println("completed");

}//eof else

else{

sample.setIcon(samicon3);

b1.setIcon(ic21);

b2.setIcon(ic22);

b3.setIcon(ic23);

b4.setIcon(ic24);

b5.setIcon(ic25);

b6.setIcon(ic26);

b7.setIcon(ic27);

b8.setIcon(ic28);

b9.setIcon(ic29);

star=b6.getIcon();

System.out.println("completed");

System.out.println(star+"hello");

starB.setIcon(ic20);

System.out.println("completed");

Login l=new Login();

 57

CMRTC

l.setVisible(true);

dispose();

}//eof else

 Login l=new Login();

 l.setVisible(true);

 dispose();

}

}

 public static void main(String args[]){

new picpuzzle2();

}//end of main

}//end of class

Home.java

package login;

import java.awt.BorderLayout;

import java.awt.EventQueue;

import javax.swing.JFrame;

import javax.swing.JPanel;

 58

CMRTC

import javax.swing.border.EmptyBorder;

import javax.swing.JLabel;

import java.awt.Color;

import java.awt.Font;

import javax.swing.JOptionPane;

import javax.swing.JTextField;

import javax.swing.JPasswordField;

import javax.swing.JButton;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.io.InputStream;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.OutputStream;

import java.net.InetAddress;

import java.net.Socket;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

 59

CMRTC

import java.util.TreeMap;

 import javax.swing.ImageIcon; import admin.Admin;

 public class Home extends JFrame {

 ArrayList li=new ArrayList();

 private JPanel contentPane;

 private JTextField regno;

 public String uname,pass;

public static ArrayList us=new ArrayList();

 public static void main(String[] args) {

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 Home frame = new Home();

 frame.setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 60

CMRTC

 }

 public Home() {

 setForeground(new Color(0, 0, 255));

 setFont(new Font("Book Antiqua", Font.BOLD | Font.ITALIC, 10));

 setResizable(false);

 setTitle(" UNIVERSITY RESULT");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setBounds(100, 100, 588, 451);

 contentPane = new JPanel();

 contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

 setContentPane(contentPane);

 contentPane.setLayout(null);

 final JPanel panel = new JPanel();

 panel.setBounds(0, 0, 582, 423);

 contentPane.add(panel);

 panel.setLayout(null);

JLabel lblRegesterNo = new JLabel("ENTER YOUR REGESTER NO:");

 lblRegesterNo.setFont(new Font("Tahoma", Font.PLAIN, 14));

 lblRegesterNo.setForeground(new Color(255, 69, 0));

 61

CMRTC

 lblRegesterNo.setBounds(95, 273, 219, 14);

 panel.add(lblRegesterNo);

 regno = new JTextField();

 regno.setFont(new Font("Palatino Linotype", Font.BOLD, 13));

 regno.setForeground(new Color(0, 0, 0));

 regno.setColumns(10);

 regno.setBounds(305, 265, 173, 32);

 panel.add(regno);

 JButton SUBMIT = new JButton("SUBMIT");

 SUBMIT.setFont(new Font("Tahoma", Font.BOLD, 11));

 SUBMIT.setIcon(new

ImageIcon("E:\\prabaworkspace\\Annuniversity\\src\\images\\clean.png"));

 SUBMIT.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 try

 {

 String re=regno.getText();

 if(re.equals(""))

 {

 62

CMRTC

 JOptionPane.showMessageDialog(panel,

"ENTER YOUR REGISTER NO");

 }

 else

 {

 String reg=re.toUpperCase();

 Random rand = new Random();

 int val = rand.nextInt(50);

 System.out.println("port no \t"+val);

 System.out.println(reg);

 li.add("regno");

 li.add(reg);

 TreeMap resul=new TreeMap();

 TreeMap request=new TreeMap();

 String ip=InetAddress.getLocalHost().getHostAddress();

 resul.put(reg, val);

 resul.put(String.valueOf(val), ip);

 Socket clients= new Socket("192.168.0.5",177);

 OutputStream ou=clients.getOutputStream();

 63

CMRTC

 ObjectOutputStream obou=new ObjectOutputStream(ou);

 obou.writeObject(li);

 ObjectOutputStream obo=new ObjectOutputStream(ou);

 obo.writeObject(resul);

 System.out.println("ip in home\t"+ip);

 int port=clients.getPort();

 InputStream in=clients.getInputStream();

 ObjectInputStream obin=new ObjectInputStream(in);

 String sname=obin.readObject().toString();

 System.out.println("sname is\t"+sname);

 if(sname.equalsIgnoreCase("false"))

 {

JOptionPane.showMessageDialog(panel, "INVALID REGISTER NO");

 regno.setText("");

 dispose();

 }

 else

 {

 dispose();

 64

CMRTC

 Studentpage.port(val,sname,ip,port,reg);

 Studentpage.main(null);

 }

 }

 }

 JLabel lblWelcomeToUser = new JLabel("WELCOME TO ANNA

UNIVERSITY");

 lblWelcomeToUser.setBounds(175, 36, 249, 14);

 panel_1.add(lblWelcomeToUser);

 lblWelcomeToUser.setForeground(new Color(128, 0, 0));

 lblWelcomeToUser.setFont(new Font("SimSun-ExtB", Font.BOLD,

16));

 lblWelcomeToUser.setBackground(Color.GRAY);

 JLabel lblNewLabel_2 = new JLabel("");

 lblNewLabel_2.setIcon(new

ImageIcon("E:\\prabaworkspace\\Annuniversity\\img\\bimg\\hd\\abstract_backgrou

nd_3-wallpaper-1280x960.jpg"));

 lblNewLabel_2.setBounds(0, 116, 584, 307);

 panel.add(lblNewLabel_2);

 65

CMRTC

 }

}

Admin.java:

package admin;

import java.awt.BorderLayout;

import java.awt.EventQueue;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.border.EmptyBorder;

import javax.swing.JLabel;

import java.awt.Color;

import java.awt.Font;

import javax.swing.JOptionPane;

public class Admin extends JFrame {

 private JPanel contentPane;

 private JTextField name;

 private JPasswordField password;

public static String uname;

 public static void main(String[] args) {

 66

CMRTC

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 Admin frame = new Admin();

 frame.setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 }

 public Admin() {

 setTitle("ADMIN LOGIN");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setBounds(100, 100, 345, 374);

 contentPane = new JPanel();

 contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

 setContentPane(contentPane);

 contentPane.setLayout(null);

 67

CMRTC

 final JPanel panel = new JPanel();

 panel.setBounds(0, 0, 329, 336);

 contentPane.add(panel);

 panel.setLayout(null);

 JLabel adminlogin = new JLabel("WELCOME TO ADMIN LOGIN");

 adminlogin.setFont(new Font("SimSun-ExtB", Font.BOLD, 16));

 adminlogin.setForeground(new Color(128, 0, 0));

 adminlogin.setBackground(Color.GRAY);

 adminlogin.setBounds(67, 49, 210, 14);

 panel.add(adminlogin);

 JLabel lblNewLabel = new JLabel("USER NAME");

 lblNewLabel.setFont(new Font("Tahoma", Font.PLAIN, 14));

 lblNewLabel.setForeground(Color.RED);

 lblNewLabel.setBounds(44, 126, 98, 14);

 panel.add(lblNewLabel);

 JLabel lblNewLabel_1 = new JLabel("PASSWORD");

 lblNewLabel_1.setFont(new Font("Tahoma", Font.PLAIN, 14));

 lblNewLabel_1.setForeground(Color.RED);

 lblNewLabel_1.setBounds(44, 196, 78, 14);

 68

CMRTC

 panel.add(lblNewLabel_1);

 name = new JTextField();

 name.setForeground(new Color(165, 42, 42));

 name.setFont(new Font("Tahoma", Font.PLAIN, 13));

 name.setBounds(165, 126, 112, 20);

 panel.add(name);

 name.setColumns(10);

 JButton SUBMIT = new JButton("LOGIN");

 SUBMIT.setIcon(new

ImageIcon("E:\\prabaworkspace\\Annuniversity\\src\\images\\login (2).png"));

 SUBMIT.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String uname=name.getText();

 String pass=String.valueOf(password.getPassword());

 if("y".equals(uname)&&"s".equals(pass))

 {

 JOptionPane.showMessageDialog(panel, "Welcome admin");

 dispose();

 Studentloginstatus frame = new Studentloginstatus();

 69

CMRTC

 frame.setVisible(true);

 }

 else

 JOptionPane.showMessageDialog(panel,

"Username or Password wrong");

 }

 });

 SUBMIT.setMnemonic('I');

 SUBMIT.setBounds(47, 253, 123, 41);

 panel.add(SUBMIT);

 JButton EXIT = new JButton("EXIT");

 EXIT.setIcon(new

ImageIcon("E:\\prabaworkspace\\Annuniversity\\src\\images\\exit.png"));

 EXIT.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 dispose();

 }

 });

 EXIT.setMnemonic('X');

 EXIT.setBounds(202, 252, 98, 42);

 70

CMRTC

 panel.add(EXIT);

 password = new JPasswordField();

 password.setForeground(new Color(165, 42, 42));

 password.setFont(new Font("Tahoma", Font.PLAIN, 13));

 password.setBounds(165, 193, 112, 20);

 panel.add(password);

 JLabel lblNewLabel_2 = new JLabel("");

 lblNewLabel_2.setIcon(new

ImageIcon("E:\\prabaworkspace\\Annuniversity\\src\\images\\abstract_background

_3-wallpaper-1280x960.jpg"));

 lblNewLabel_2.setBounds(0, 0, 329, 336);

 panel.add(lblNewLabel_2);

 }

}

 71

CMRTC

 6.SNAPSHOTS

 71

CMRTC

CHAPTER 6

SNAPSHOTS

6.1 General

Home Page

Admin login

 72

CMRTC

6.2 Various Snapshots

User Registration

 73

CMRTC

 7.TESTING

 73

CMRTC

CHAPTER 7

SOFTWARE TESTING

7.1 GENERAL

The seriousness of the DoS/DDoS problem and their increased frequency has led to the advent of

numerous defense mechanisms. In this paper, we are particularly interested in the

countermeasures to DoS/DDoS attacks on server computation power. DoS and DDoS are

effective if attackers spend much less resources than the victim server or are much more

powerful than normal users.

7.2 DEVELOPING METHODOLOGIES

 The test process is initiated by developing a comprehensive plan to test the general

functionality and special features on a variety of platform combinations. Strict quality control

procedures are used.

 The process verifies that the application meets the requirements specified in the system

requirements document and is bug free. The following are the considerations used to develop the

framework from developing the testing methodologies.

7.3Types of Tests

7.3.1 Unit testing
 Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program input produce valid outputs. All decision branches and

internal code flow should be validated. It is the testing of individual software units of the

application .it is done after the completion of an individual unit before integration. This is a

structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs accurately

to the documented specifications and contains clearly defined inputs and expected results.

 74

CMRTC

7.3.2 Functional test

 Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures : interfacing systems or procedures must be invoked.

7.3.3 System Test

 System testing ensures that the entire integrated software system meets requirements. It

tests a configuration to ensure known and predictable results. An example of system testing is the

configuration oriented system integration test. System testing is based on process descriptions

and flows, emphasizing pre-driven process links and integration points.

7.3.4 Performance Test

 The Performance test ensures that the output be produced within the time limits,and the

time taken by the system for compiling, giving response to the users and request being send to

the system for to retrieve the results.

7.3.5 Integration Testing

 Software integration testing is the incremental integration testing of two or more

integrated software components on a single platform to produce failures caused by interface

defects.

 75

CMRTC

 The task of the integration test is to check that components or software applications, e.g.

components in a software system or – one step up – software applications at the company level –

interact without error.

7.3.6 Acceptance Testing

 User Acceptance Testing is a critical phase of any project and requires significant

participation by the end user. It also ensures that the system meets the functional requirements.

Acceptance testing for Data Synchronization:

 The Acknowledgements will be received by the Sender Node after the Packets are

received by the Destination Node

 The Route add operation is done only when there is a Route request in need

 The Status of Nodes information is done automatically in the Cache Updation process

7.3.7 Build the test plan

 Any project can be divided into units that can be further performed for detailed

processing. Then a testing strategy for each of this unit is carried out. Unit testing helps to

identity the possible bugs in the individual component, so the component that has bugs can be

identified and can be rectified from errors.

 76

CMRTC

 8.RESULT

 76

CMRTC

CHAPTER 8

RESULT

8.1 APPLICATION

A Network application is any application running on one host and provides a

communication to another application running on a different host, the application may use an

existing application layer protocols such as: HTTP(e.g. the Browser and web server), and may be

the application does not use any existing protocols and depends on the socket programming to

communicate to another application. So the web application is a type of the network applications.

We can distinguish between network and stand-alone applications. For example, if you use

Microsoft Word to write a letter and save it on your PC, both the program and the data are stored

on your computer. Since your computer does not have to be connected to a network, this is an

example of a stand-alone application.

 77

CMRTC

8.2 FUTURE ENHANCEMENTS

 GPU-inflation attack, its idea can be extended to thwart DoS attackers which

exploit other inflation resources such as Cloud Computing. For example, suppose the server

inserts some anti-debugging codes for detecting Cloud platform into software puzzle, when the

puzzle is running.

 78

CMRTC

 9.CONCLUSION

 78

CMRTC

CHAPTER 9
CONCLUSION

In this article, we study camera-related vulnerabilities in Android phones for mobile

multimedia applications. We discuss the roles a spy camera can play to attack or benefit phone

users. We discover several advanced spy camera attacks, including the remote-controlled real-

time monitoring attack and two types of passcode inference attacks. Meanwhile, we propose an

effective defense scheme to secure a smartphone from all these spy camera attacks. In the future,

we will investigate the feasibility of performing spy camera attacks on other mobile operating

systems.

 79

CMRTC

 10.BIBILIOGRAPHY

 79

CMRTC

CHAPTER 10

BIBILIOGRAPHY

1.Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization and Evolution", IEEE

Symp. Security and Privacy 2012, pp. 95-109, 2012.

2.R. Schlegel, "Soundcomber: A Stealthy and Context Aware Sound Trojanfor Smartphones",

NDSS, pp. 17-33, 2011.

3.N. Xu, "Stealthy Video Capturer: A New Video-Based Spyware in 3g Smartphones", Proc. 2nd

ACM Conf. Wireless Network Security, pp. 69-78, 2009.

4.F. Maggi, "A Fast Eavesdropping Attack against Touchscreens", 7th Int'l. Conf. Info.

Assurance and Security, pp. 320-25, 2011.

5.R. Raguram, "ispy: Automatic Reconstruction of Typed Input from Compromising

Reflections", Proc. 18th ACM Conf. Computer and Commun. Security, pp. 527-36, 2011.

6."Android-eye", 2012.

7."Nanohttpd".

8.A. P. Felt and D. Wagner, "Phishing on Mobile Devices", Proc. WEB 2.0 Security and Privacy,

2011.

9.D. Li, D. Winfield and D. Parkhurst, "Starburst: A Hybrid Algorithm for Video-Based Eye

Tracking Combining Feature-Based and Model-Based Approaches", IEEE Computer Soc. Conf.

Computer Vision and Pattern Recognition Workshops, pp. 79, 2005.

10.P. Aldrian, "Fast Eyetracking", 2009.

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:459 www.jespublication.com

Security Threats To Mobile Multimedia Applications

1J SRIVIDYA, 2PHANI CH, 3ANIKETH D, 4ROHITNIVAS B

1Assistant Professor, 234B.Tech Student

DEPT OF CSE

CMR TECHNICAL CAMPUS, Hyderabad

ABSTRACT: Today's mobile smartphones are

very powerful, and many smartphone

applications use wireless multimedia

communications. Mobile phone security has

become an important aspect of security issues in

wireless multimedia communications. As the

most popular mobile operating system, Android

security has been extensively studied by

researchers. However, few works have studied

mobile phone multimedia security. In this article,

we focus on security issues related to mobile

phone cameras. Specifically, we discover several

new attacks that are based on the use of phone

cameras. We implement the attacks on real

phones, and demonstrate the feasibility and

effectiveness of the attacks. Furthermore, we

propose a lightweight defense scheme that can

effectively detect these attacks.

I.INTRODUCTION

 Since 2007, the Android operating

system (OS) has enjoyed an incredible rate of

popularity. As of 2013, the Android OS holds

79.3 percent of global smartphone market shares.

Meanwhile, a number of Android security and

privacy vulnerabilities have been exposed in the

past several years. Although the Android

permission system gives users an opportunity to

check the permission request of an application

(app) before installation, few users have

knowledge of what all these permission requests

stand for; as a result, they fails to warn users of

security risks. Meanwhile, an increasing number

of apps specified to enhance security and protect

user privacy have appeared in Android app

markets. Most large anti-virus software

companies have published their Android-version

security apps, and tried to provide a shield for

smartphones by detecting and blocking malicious

apps. In addition, there are data protection apps

that provide users the capability to encrypt,

decrypt, sign, and verify signatures for private

texts, emails, and files. However, mobile

malware and privacy leakage remain a big threat

to mobile phone security and privacy.

Generally, when talking about privacy

protection, most smartphone users pay attention

to the safety of SMS, emails, contact lists, calling

histories, location information, and private files.

They may be surprised that the phone camera

could become a traitor; for example, attackers

could stealthily take pictures and record videos

by using the phone camera. Nowadays, various

types of camera-based applications have

appeared in Android app markets (photography,

barcode readers, social networking, etc.). Spy

camera apps have also become quite popular. As

for Google Play, there are nearly 100 spy camera

apps, which allow phone users to take pictures or

record videos of other people without their

permission. However, believe it or not, phone

users themselves could also become victims.

Attackers can implement spy cameras in

malicious apps such that the phone camera is

launched automatically without the device

owner’s notice, and the captured photos and

videos are sent out to these remote attackers.

Even worse, according to a survey on Android

malware analysis [1], camera permission ranks

12th of the most commonly requested

permissions among benign apps, while it is out of

the top 20 in malware. The popularity of camera

usage in benign apps and relatively less usage in

http://jespublication.com/

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:460 www.jespublication.com

malware lower users’ alertness to camera-based

multimedia application attacks.

1.1 OBJECTIVE:

Nowadays, people carry their phones

everywhere; hence, their phones see lots of

private information. If the phone camera is

exploited by a malicious spy camera app, it may

cause serious security and privacy problems. For

example, the phone camera may record a user’s
daily activities and conversations, and then send

these out via the Internet or multimedia

messaging service (MMS). Secret photography is

not only immoral but also illegal in some

countries due to the invasion of privacy.

Nevertheless, a phone camera could also provide

some benefits if it is con-trolled well by the

device owner. For example, when the owner

wants to check if someone has used his/her phone

without permission, the phone camera could be

used to record the face of an unauthorized user.

Besides, it can also help the owner find a lost

phone.

In this article, we first conduct a survey on the

threats and benefits of spy cameras. Then we

present the basic attack model and two camera

based attacks: the remote-controlled real-time

monitoring attack and the passcode inference

attack. We run these attacks along with popular

antivirus software to test their stealthiness, and

conduct experiments to evaluate both types of

attacks. The results demonstrate the feasibility

and effectiveness of these attacks. Finally, we

propose a lightweight defense scheme.

II. EXISTING SYSTEM:

Several video-based attacks targeted at

keystrokes have been proposed. The attacks can

obtain user input on touch screen smart phones.

Maggi et al. implement an automatic shoulder

surfing attack against modern touch-enabled

smart phones. The attacker deploys a video

camera that can record the target screen while the

victim is entering text. Then user input can be

reconstructed solely based on the keystroke

feedback displayed on the screen.

DRAWBACKS IN EXISTING SYSTEM:

 It works only when visual feedback such

as magnified keys are available.

 Mobile malware and privacy leakage

remain a big threat to mobile phone

security and privacy

III.LITERATURE SURVEY:

TITLE : Dissecting Android Malware:

Characterization and Evolution

AUTHOR : Y. Zhou and X. Jiang,

YEAR : 2012

DESCRIPTION

 The popularity and adoption of smart

phones has greatly stimulated the spread of

mobile malware, especially on the popular

platforms such as Android. In light of their rapid

growth, there is a pressing need to develop

effective solutions. However, our defense

capability is largely constrained by the limited

understanding of these emerging mobile malware

and the lack of timely access to related samples.

In this paper, we focus on the Android platform

and aim to systematize or characterize existing

Android malware. Particularly, with more than

one year effort, we have managed to collect more

than 1,200 malware samples that cover the

majority of existing Android malware families,

ranging from their debut in August 2010 to recent

ones in October 2011. In addition, we

systematically characterize them from various

aspects, including their installation methods,

activation mechanisms as well as the nature of

carried malicious payloads. The characterization

and a subsequent evolution-based study of

representative families reveal that they are

evolving rapidly to circumvent the detection from

existing mobile anti-virus software. Based on the

http://jespublication.com/

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:461 www.jespublication.com

evaluation with four representative mobile

security software, our experiments show that the

best case detects 79.6% of them while the worst

case detects only 20.2% in our dataset. These

results clearly call for the need to better develop

next-generation anti-mobile-malware solutions.

TITLE : A Fast Eavesdropping Attack

against Touchscreens.

AUTHOR : F. Maggi, et

YEAR : 2011.

DESCRIPTION

 The pervasiveness of mobile devices

increases the risk of exposing sensitive

information on the go. In this paper, we arise this

concern by presenting an automatic attack against

modern touchscreen keyboards. We demonstrate

the attack against the Apple iPhone - 2010's most

popular touchscreen device - although it can be

adapted to other devices (e.g., Android) that

employ similar key-magnifying keyboards. Our

attack processes the stream of frames from a

video camera (e.g., surveillance or portable

camera) and recognizes keystrokes online, in a

fraction of the time needed to perform the same

task by direct observation or offline analysis of a

recorded video, which can be unfeasible for large

amount of data. Our attack detects, tracks, and

rectifies the target touchscreen, thus following

the device or camera's movements and

eliminating possible perspective distortions and

rotations In real-world settings, our attack can

automatically recognize up to 97.07 percent of

the keystrokes (91.03 on average), with 1.15

percent of errors (3.16 on average) at a speed

ranging from 37 to 51 keystrokes per minute.

IV.PROPOSED SYSTEM:

In this article, we first conduct a survey on the

threats and benefits of spy cameras. Then we

present the basic attack model and two camera

based attacks: the remote-controlled real-time

monitoring attack and the passcode inference

attack. We run these attacks along with popular

antivirus software to test their stealthiness, and

conduct experiments to evaluate both types of

attacks. The results demonstrate the feasibility

and effectiveness of these attacks.

ADVANTAGES IN PROPOSED SYSTEM:

 The attacker needs considerable effort in

translating central processing unit puzzle

software to its functionally equivalent

GPU version such that the translation

cannot be done in real time.

 Moreover, we show how to implement

puzzle in the generic server-browser

model. To outsourcing any business onto

a cloud.

 By using this Applications, we can easily

be avoided by selecting the time to

launch attack.

 The malicious camera app can

periodically check the screen status and

run the stealthy video recording only

when the screen is off, which means that

the user is not using the phone and the

camera device is idle.

V.IMPLEMANTATION

 The seriousness of the DoS/DDoS

problem and their increased frequency has led to

the advent of numerous defense mechanisms. In

this paper, we are particularly interested in the

countermeasures to DoS/DDoS attacks on server

computation power. DoS and DDoS are effective

if attackers spend much less resources than the

victim server or are much more powerful than

normal users.

 There are five modules for the Software

Puzzle.

5.1MODULES

 USER INTERFACE DESIGN

 GPU-INFLATED DOS ATTACK

 PUZZLE GENERATION

 CODE PROTECTION

http://jespublication.com/

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:462 www.jespublication.com

 SECURITY ANALYSIS

 User Interface Design:

 This is the first module of our project. The

important role for the cloud user is to move login

window to cloud user window. This module has

created for the security purpose. In this login page

we have to enter login user id and password. It

will check username and password is match or

not (valid user id and valid password). If we enter

any invalid username or password we can’t enter
into login window to user window it will shows

error message. So we are preventing from

unauthorized user entering into the login window

to user window. It will provide a good security

for our project. So server contain user id and

password server also check the authentication of

the user. It well improves the security and

preventing from unauthorized user enters into the

network. In our project we are using JSP for

creating design. Here we validate the login user

and server authentication.

 GPU-Inflated Dos Attack:

 In order to elaborate software puzzle, we

recap its rival GPU-inflated DoS attack in

advance. When a client wants to obtain a service,

she sends a request to the server. After receiving

the client request, the server responds with a

puzzle challenge x. If the client is genuine, she

will find the puzzle solution y directly on the host

CPU, and send the response (x, y) to the server.

However, as shown in Fig. 1, by using the similar

mechanism in accelerating calculation with GPU,

a malicious user who controls the host will send

the challenge x to GPU and exploit the GPU

resource to accelerate the puzzle-solving process.

Since the virtual keyboard in a touch screen

smartphone is much smaller than computer

keyboards, the virtual keys are very close to each

other. Based on measurement of a Galaxy Nexus

4 phone, even an offset of 5 mm could result in

touching the wrong key. Hence, when typing,

users tend to keep a short distance to the screen,

which allows the phone (front) camera to have a

clear view of a user’s eye movements. A user’s

eyes move along with the keys being touched,

which means that tracking the eye movement

could possibly tell what the user is entering. Thus,

it is of great importance to investigate whether an

attacker could obtain a phone user’s passcode by

tracking the eye movements.

 Puzzle Generation:

In order to construct a puzzle, the server has to

execute three modules: puzzle core generation,

puzzle challenge generation, puzzle

encrypting/obfuscating.

1) Puzzle Core Generation: From the code

block warehouse, the server first chooses n code

blocks based on hash functions and a secret, e.g.,

the j th instruction block bi j , where i j = H1(y, j

), and y = H2(key, sn), with one-way functions

H1(·) and H2(·), key is the server’s secret, and sn

is a nonce or timestamp. All the chosen blocks are

assembled into a puzzle core, denoted as C(·) =

(bi1 ; bi2 ; · · · ; bin). As an illustrative example,

Table III in the appendix shows an example

puzzle core C generated from AES operation

blocks stored in warehouse S.

2) Puzzle Challenge Generation: Given some

auxiliary input messages such as IP addresses,

and in-line constants, the server calculates a

message m from public data such as their IP

addresses, port numbers and cookies, and

produces a challenge x = C(y,m), smiliar to

encrypting plaintext m with key y to produce

ciphertext x. As the attacker does not know the

puzzle core C(·) (or equivalently the puzzle

function P(·)) in advance, it can not exploit GPU

to solve the puzzle C0x in real time using the

basic GPU-inflated DoS attack addressed in

Subsection III-A. Nonetheless, if the puzzle is

merely constructed as aboveit is possible for an

attacker to generate the GPU kernel by mapping

the CPU instructions in C0x to the GPU

instructions one by one, i.e., to automatically

http://jespublication.com/

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:463 www.jespublication.com

translate the CPU software puzzle C0x into its

functionally equivalent GPU version.

 Code Protection:

Intuitively, code obfuscation is able to

thwart the above translation threat to some

extent. Though there are no generic

obfuscation techniques which can prevent

a patient and advanced hacker from

understanding a program results in show

that obfuscation does increase the cost of

reverse-engineering. Thus, although code

obfuscation may be not satisfactory in

long-term software defense against

hacking, it is suitable for fortifying

software puzzles which demand a

protection period of several seconds only.

A puzzle consists of instructs, and each

instruction has a form (opCode,

[operands]), where opCode indicates

which operation (e.g., addition, shift, jump)

is, while

the operands, varying with opCode, are the

parameters (e.g., target address of jump

instruction) to complete the operations. As a

popular obfuscation technology, code

encryption technology treats software code as

data string and encrypts both operand and

opCode.

 Security Analysis:

 In this module puzzle aims to prevent

GPU from being used in the puzzle-solving

process based on different instruction sets and

real-time environments between GPU and CPU.

Conversely, an adversary may attempt to deface

the puzzle scheme by simulating the host on GPU

(Subsection V-A), cracking puzzle algorithm

(Subsection V-B), re-producing GPU-version

puzzle (Subsections V-C ∼ V-E), or abusing the

access priority in puzzle-solving (Subsection V-

F).

5.2 SYSTEM TECHNIQUES:

Algorithm: Cracking Data Puzzle Algorithm

The practical strategy of the attacker is to

accelerate the brute force process by exploiting

the parallel computation capability of GPU cores.

We classify client puzzles into two types. If a

puzzle functions P, as all the existing client

puzzle schemes, is fixed and disclosed in

advance, the puzzle is called a data puzzle;

otherwise, it is referred to as a software puzzle.

VI.SYSTEM ARCHITECTURE

EXPLANATION:

The systems architect establishes the basic

structure of the system, this we know about that

the practical strategy of the attacker is to

accelerate the brute force process by exploiting

the parallel computation capability of GPU cores.

We classify client puzzles into two types. If a

puzzle functions P, as all the existing client

puzzle schemes, is fixed and disclosed in

advance, the puzzle is called a data puzzle;

otherwise, it is referred to as a puzzle. To ensure

http://jespublication.com/

Vol 13, Issue 06, June/2022

ISSN NO:0377-9254

Page No:464 www.jespublication.com

challenge data confidentiality and code security

for an appropriate time period. After receiving the

puzzle sent from the server, a client tries to solve

the software puzzle on the host CPU, and replies

to the server, as the conventional client puzzle

scheme does.

VII.APPLICATION

A Network application is any application running

on one host and provides a communication to

another application running on a different host,

the application may use an existing application

layer protocols such as: HTTP(e.g. the Browser

and web server), and may be the application does

not use any existing protocols and depends on the

socket programming to communicate to another

application. So the web application is a type of

the network applications.

We can distinguish between network and stand-

alone applications. For example, if you use

Microsoft Word to write a letter and save it on

your PC, both the program and the data are stored

on your computer. Since your computer does not

have to be connected to a network, this is an

example of a stand-alone application.

 VIII.FUTURE ENHANCEMENTS

 GPU-inflation attack, its idea

can be extended to thwart DoS attackers which

exploit other inflation resources such as Cloud

Computing. For example, suppose the server

inserts some anti-debugging codes for detecting

Cloud platform into software puzzle, when the

puzzle is running.

IX.CONCLUSION

 In this article, we study camera-related

vulnerabilities in Android phones for mobile

multimedia applications. We discuss the roles a

spy camera can play to attack or benefit phone

users. We discover several advanced spy camera

attacks, including the remote-controlled real-time

monitoring attack and two types of passcode

inference attacks. Meanwhile, we propose an

effective defense scheme to secure a smartphone

from all these spy camera attacks. In the future,

we will investigate the feasibility of performing

spy camera attacks on other mobile operating

systems.

REFERENCES

1.Y. Zhou and X. Jiang, "Dissecting Android

Malware: Characterization and Evolution", IEEE

Symp. Security and Privacy 2012, pp. 95-109,

2012.

2.R. Schlegel, "Soundcomber: A Stealthy and

Context Aware Sound Trojanfor Smartphones",

NDSS, pp. 17-33, 2011.

3.N. Xu, "Stealthy Video Capturer: A New

Video-Based Spyware in 3g Smartphones", Proc.

2nd ACM Conf. Wireless Network Security, pp.

69-78, 2009.

4.F. Maggi, "A Fast Eavesdropping Attack

against Touchscreens", 7th Int'l. Conf. Info.

Assurance and Security, pp. 320-25, 2011.

5.R. Raguram, "ispy: Automatic Reconstruction

of Typed Input from Compromising Reflections",

Proc. 18th ACM Conf. Computer and Commun.

Security, pp. 527-36, 2011.

6."Android-eye", 2012.

7."Nanohttpd".

8.A. P. Felt and D. Wagner, "Phishing on Mobile

Devices", Proc. WEB 2.0 Security and Privacy,

2011.

9.D. Li, D. Winfield and D. Parkhurst, "Starburst:

A Hybrid Algorithm for Video-Based Eye

Tracking Combining Feature-Based and Model-

Based Approaches", IEEE Computer Soc. Conf.

Computer Vision and Pattern Recognition

Workshops, pp. 79, 2005.

10.P. Aldrian, "Fast Eyetracking", 2009.

http://jespublication.com/

